On the minimum rainbow subgraph number of a graph

نویسنده

  • Ingo Schiermeyer
چکیده

We consider the MINIMUM RAINBOW SUBGRAPH problem (MRS): Given a graph G whose edges are coloured with p colours. Find a subgraph F ⊆ G of minimum order and with p edges such that each colour occurs exactly once. This problem is NP-hard and APX-hard. For a given graph G and an edge colouring c with p colours we define the rainbow subgraph number rs(G, c) to be the order of a minimum rainbow subgraph of G with size p. In this paper we will show lower and upper bounds for the rainbow subgraph number of a graph.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Total $k$-Rainbow domination numbers in graphs

Let $kgeq 1$ be an integer, and let $G$ be a graph. A {it$k$-rainbow dominating function} (or a {it $k$-RDF}) of $G$ is afunction $f$ from the vertex set $V(G)$ to the family of all subsetsof ${1,2,ldots ,k}$ such that for every $vin V(G)$ with$f(v)=emptyset $, the condition $bigcup_{uinN_{G}(v)}f(u)={1,2,ldots,k}$ is fulfilled, where $N_{G}(v)$ isthe open neighborhood of $v$. The {it weight} o...

متن کامل

Some Results on the Maximal 2-Rainbow Domination Number in Graphs

A 2-rainbow dominating function ( ) of a graph  is a function  from the vertex set  to the set of all subsets of the set  such that for any vertex  with  the condition  is fulfilled, where  is the open neighborhood of . A maximal 2-rainbow dominating function on a graph  is a 2-rainbow dominating function  such that the set is not a dominating set of . The weight of a maximal    is the value . ...

متن کامل

Large Rainbow Matchings in Large Graphs

A rainbow subgraph of an edge-colored graph is a subgraph whose edges have distinct colors. The color degree of a vertex v is the number of different colors on edges incident to v. We show that if n is large enough (namely, n ≥ 4.25k), then each n-vertex graph G with minimum color degree at least k contains a rainbow matching of size at least k.

متن کامل

Bounds on the restrained Roman domination number of a graph

A {em Roman dominating function} on a graph $G$ is a function$f:V(G)rightarrow {0,1,2}$ satisfying the condition that everyvertex $u$ for which $f(u) = 0$ is adjacent to at least one vertex$v$ for which $f(v) =2$. {color{blue}A {em restrained Roman dominating}function} $f$ is a {color{blue} Roman dominating function if the vertices with label 0 inducea subgraph with no isolated vertex.} The wei...

متن کامل

Rainbow edge-coloring and rainbow domination

Let G be an edge-colored graph with n vertices. A rainbow subgraph is a subgraph whose edges have distinct colors. The rainbow edge-chromatic number of G, written χ̂′(G), is the minimum number of rainbow matchings needed to cover E(G). An edgecolored graph is t-tolerant if it contains no monochromatic star with t+1 edges. If G is t-tolerant, then χ̂′(G) < t(t+ 1)n lnn, and examples exist with χ̂′(...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012